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LONG-TERM GOAL 
 
The overall goal of this work is to refine and validate a spectrum-matching and look-up-table (LUT) 
technique for rapidly inverting remotely sensed hyperspectral reflectances to extract environmental 
information such as water-column optical properties, bathymetry, and bottom classification.  The work 
also seeks to combine hyperspectral imagery and LIDAR bathymetry to improve the capabilities of 
both. 
 
OBJECTIVES 
 
My colleagues and I are developing and evaluating a new technique for the extraction of 
environmental information including water-column inherent optical properties (IOPs) and shallow-
water bathymetry and bottom classification from remotely-sensed hyperspectral ocean-color spectra.  
We address the need for rapid, automated interpretation of hyperspectral imagery.  The research issues 
center on development and evaluation of spectrum-matching algorithms, including the generation of 
confidence metrics for the retrieved information.  
 
APPROACH 
 
The LUT methodology is based on a spectrum-matching and look-up-table approach in which the 
measured remote-sensing reflectance spectrum is compared with a large database of spectra 
corresponding to known water, bottom, and external environmental conditions.  The water and bottom 
conditions of the water body where the spectrum was measured are then taken to be the same as the 
conditions corresponding to the database spectrum that most closely matches the measured spectrum.   
 
In previous LUT work, we have been simultaneously retrieving water column IOPs, bottom depth, and 
bottom classification at each pixel from the remote-sensing reflectance RRrs spectra.  This is much to 
ask from a simple RrsR
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 spectrum, but we have conclusively shown that all of this information is 
uniquely contained in hyperspectral reflectance signatures and that the information can be extrac
with considerable accuracy (Mobley et al., 2005).  Nevertheless, in many situations of practical 
interest, additional information, such as LIDAR bathymetry or in-water measurements of inherent
optical properties (IOPs, namely the absorption, scattering, and backscatter spectra), will be availab
and should be used to constrain the LUT retrieval for the remaining unknown quantiti
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There is currently much interest in combining LIDAR bathymetry with hyperspectral imagery.  In such 
a situation, the LIDAR can be use to recover accurate bathymetry over part or all of the area seen by 
the hyperspectral imager.  The LIDAR-retrieved bottom depths can then be taken as known when 
performing the LUT spectrum matching to obtain water column IOPs and bottom classification.  
Knowing the bottom depth (which in some situations also may be known from nautical charts or from 
acoustic surveys) removes one of the unknowns in the LUT spectrum matching, and we consequently 
expect that the LUT recovered IOPs and bottom classification will then be more accurate. 
 
WORK COMPLETED 
 
This year’s work centered developing LUT RRrs inversion code that allows the depth to be either 
unknown or known at each image pixel.  When the depth is known for a given pixel, only the bottom 
reflectance and water-column absorption, scatter, and backscatter spectra are retrieved by the LUT 
inversion.  This is called a depth-constrained inversion.  If no depth is available for a given pixel, then 
the bathymetry is also retrieved.  This is an unconstrained inversion in which no assumptions are made 
about the environment being imaged.  It is also possible to do IOP-constrained inversions, or depth- 
and IOP-constrained inversions, in which case only the bottom classification remains as an unknown.  
I used the new code in to investigate what improvements in LUT retrievals of bottom classification and 
IOPs can be achieved if the bathymetry is known from a LIDAR or acoustic survey of the imaged area.  
I also studied what improvements can be obtained in retrieved bathymetry and bottom classification if 
the IOPs are known, e.g., from an in-water instrument such as the ac9 ( ).  I finally 
studied the improvements in retrieved bottom classification if both bathymetry and water IOPs are 
known, which greatly constrains the inversion for bottom classification. 
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In addition to the constrained inversion work, I performed a detailed analysis of LUT bottom 
classification retrieval in the area of Horseshoe Reef itself, for which more detailed bottom 
classification information was available from underwater transects.  A paper has been submitted on 
those results (Lesser and Mobley, submitted). 
 
I also further streamlined the software and database search and spectrum matching algorithms, so as to 
speed up the processing time required for large images.  The LUT database was also expanded with 
new sets of inherent optical properties.  In particular, the new IOPs include particle backscatter 
fractions of 0.01, 0.02, 0.03, and 0.04.  The previous database had only a 0.02 backscatter fraction for 
the clear-water IOPs used in the analysis of the imagery taken near Lee Stocking Island, Bahamas, as 
previously reported. 
 
I also further studied the effects of atmospheric correction on LUT retrievals.  That work (not 
discussed here) highlighted the need for improved atmospheric correction techniques, which are now 
being developed by my colleagues at the Florida Environmental Research Institute. 
 
RESULTS 
 
The LUT approach to retrieving IOPs, bottom reflectance, and bottom depth information from remote-
sensing reflectances has performed well in its application to various PHILLS images (Mobley, et al., 
2005).  This year I analyzed additional imagery from the Lee Stocking Island (LSI), Bahamas, area, for 
which acoustic bathymetry and some IOP data were available.  Figure 1 shows a PHILLS image taken 
near LSI; Fig. 2 is the corresponding acoustic bathymetry.   
 



When doing an unconstrained retrieval on this image, the LUT bathymetry was on average 7% or 0.4 
m too shallow; 66% of the pixels were within ±1 m of the correct (acoustic) depth, and 87% of the 
pixels were within ±25% of the correct depth.  When the IOPs were constrained to be close to 
measured absorption and scattering values, the retrieved bathymetry was on average only 4% or 0.2 m 
too shallow; 64% of the retrieved depths are within ±1 m of the correct  depth, and that 87% are within 
± 25% of correct.  This indicates that some improvement in bathymetry retrievals was obtained by 
constraining the IOPs.  However, the improvement was not great, because the unconstrained LUT 
retrieval was already retrieving close to the correct IOPs.  Thus constraining the IOPs did not make 
much difference in the retrieved bathymetry.  It should be noted than some of the errors in bathymetry 
attributed to imperfect LUT retrievals are actually due to imperfect matching of the image pixel 
locations with the locations of the acoustic pings:  it is difficult to get better than a few meters 
horizontal accuracy when doing the image warping and georectification. 
 
Various LUT retrievals of bottom reflectance/type and water-column IOPs were made for 
unconstrained depths vs. constrained depths.  Figures 3 and 4 show an example of the difference in the 
retrieved bottom classification.  We see that when the depth is constrained, some areas retrieved as 
dense vegetation are reclassified as pure corals or less dense mixtures of mixtures of sediment, corals, 
sea grass, turf algae, and macrophytes.  Some areas originally classified as sand with sparse vegetation  
are reclassified as bare sediment when the depth is constrained.  Figure 5 shows the bottom 
classification when the IOPs are constrained to be similar to what was measured in this area.  Figure 6 
shows the results when both the depth and the IOPs are constrained.  Again, the additional constraints 
result in some changes in bottom classification.  Overall, though, there are no large changes in the 
bottom classification; dense vegetation never changes to bare sediment or vice versa, for example. 
 
Thus constraining the depth causes some changes in the bottom retrieval, in terms of either the bottom 
reflectance (not shown here; see the related report on LIDAR bathymetry for examples of bottom 
reflectance retrievals) or classification.  This is what is expected.  The constrained retrievals are likely 
more accurate, but pixel-by-pixel bottom reflectances or classification are not available for validation 
of these retrievals.  In either case, the retrieved bottom classification is plausible.  The reason that the 
constrained retrievals are not greatly different from the unconstrained retrievals is that the 
unconstrained LUT depth and IOP retrievals are already close to correct.  Constraining the depths or 
IOPs to be exactly correct thus has only a minor effect on the remaining parameters being retrieved.  
This indicates that the LUT retrieval is not having any problems with non-uniqueness.  That is to say, 
LUT never finds an incorrect depth, incorrect bottom reflectance, and incorrect water IOPs that 
together give a remote-sensing reflectance that is close to the correct one.  This is a reassuring check 
on LUT’s ability to retrieve the correct environmental parameters in unconstrained retrievals, as will 
often be necessary in applications to denied-access areas. 
 
Similar small changes are seen in the retrieved absorption, scattering, and backscatter spectra when the 
depth is constrained (results not shown here). 
 
The results shown here will be presented in more detail at the Ocean Optics XVIII conference in 
October 2006.  A paper on this work is being prepared for submission to either Applied Optics or 
Optics Express. 
 



 
IMPACT/APPLICATION 
 
The problem of extracting environmental information from remotely sensed ocean color spectra is 
fundamental to a wide range of Navy needs as well as basic science and ecosystem monitoring and 
management problems.  Extraction of bathymetry and bottom classification is especially valuable for 
planning military operations in denied access areas.  The fusion of hyperspectral imagery with LIDAR 
bathymetry (or other ancillary data as may be available about the imaged area) promises to improve the 
already impressive capabilities of hyperspectral imagery for extracting environmental information.  
This work thus adds to the existing suite of remote sensing analysis techniques for coastal waters. 
 
TRANSITIONS 
 
Various databases of water IOPs, bottom reflectances, and the corresponding RRrs spectra, along with 
the specialized Hydrolight code and spectrum-matching algorithms have been transitioned to Dr. Paul 
Bissett at the Florida Environmental Research Institute for processing his extensive collection of 
SAMPSON imagery now being acquired in coastal California waters, and for use in comparisons of 
LUT and LIDAR bathymetry. 
 
RELATED PROJECTS 
 
This work is being conducted in conjunction with Dr. Paul Bissett of FERI, who is separately funded 
for this collaboration.  His ONR annual report should be consulted for the details of his contributions 
to the overall LUT development.  This work also dovetailed nicely with separately funded work on the 
merger of hyperspectral imagery with LIDAR bathymetry.  That work is described in a separate annual 
report.   My own work is continuing with funding under a new contract number. 
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Fig. 1.  An RGB image of the Horseshoe Reef area made from a PHILLS 
hyperspectral image taken May 20, 2000.  The bottom includes areas of highly 

reflecting ooid sands, low reflecting, dense sea grass beds, and intermediate reflecting 
areas of mixed sediments, corals, sea grass, turf algae, and macrophytes. 

 
 

 

 
 

Fig. 2.  Acoustic bathymetry coverage for the area corresponding to Fig. 1.  The black 
dots show the locations of the acoustic pings.  The depth at each pixel of the image of 
Fig. 3 is obtained by interpolation between the locations of the acoustic data, where 

available.  Regions for which no acoustic data are available are omitted from further 
analysis.  The color-coded depths are for the unconstrained LUT retrieval applied to 

the entire image. 



 
 

Fig. 3.  Bottom classification for the unconstrained retrieval. The image region where 
no acoustic bathymetry is available is masked out. [The color coding identifies the 

bottom type, e.g., sand; sediment with sparse vegetation; dense vegetation; mixtures of 
sediment, corals, and algae; or infinitely deep water.] 

 
 
 
 

 
 

Fig. 4.  Bottom classification for the depth-constrained retrieval. 
 [color coded as in Fig. 3] 

 
 



 
 

Fig. 5.  Bottom classification for the IOP-constrained retrieval. 
 
 
 

 
 

Fig. 6.  Bottom classification for the depth- and IOP-constrained retrieval. 


